

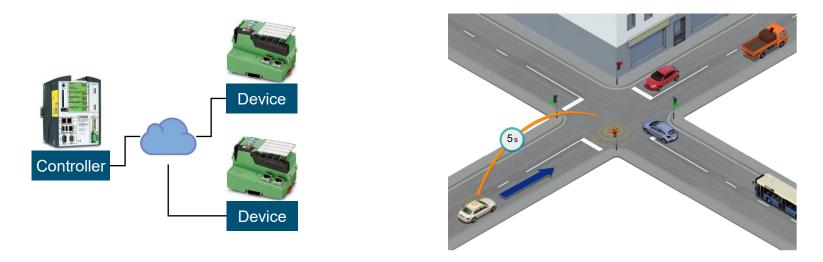
Diagnosis of V2X communication via evaluation modules and textual rule sets **Presented by Tim Ruß**

Motivation

ifak

ifak: Institute for Automation and Communication

- Applied research
- Test laboratories



Examples for our communication domains

Factory Automation

Vehicle-to-X (also: Car2X)

User Conference on Advanced Automated Testing

Right image © CAR 2 CAR Communication Consortium

© All rights reserved

Left images © Phoenix Contact

Manual process: Checking Wireshark records

- Search for connection / startup sequence
- Search for errors (alarms, connection releases...)
- → Demand to automate such processes

No.	Time	Info
1	5 2.627070	Ident Req, Xid:0x6a006b, AliasName:"port-001.rfc-470-rus-iod"
(6 4.204942	<pre>Ident Req, Xid:0x6b006c, NameOfStation:"rfc-470-rus-iod"</pre>
	7 4.258338	Ident Ok , Xid:0x6b006c, NameOfStation:"rfc-470-rus-iod", Dev-Opti
8	8 5.139583	TTL = 20 RTClass3 Port Status = OFF
9	9 5.317040	Who has 172.16.47.36? Tell 172.16.47.32
10	0 5.342206	172.16.47.36 is at 00:a0:45:51:1e:bf
11	1 5.507997	TTL = 20 RTClass3 Port Status = OFF
12	2 5.534469	Dropbox LAN sync Discovery Protocol
1	3 5.534636	Dropbox LAN sync Discovery Protocol
	47.460534	 Connect request, ARBlockReq, IOCRBlockReq, IOCRBlockReq, ExpectedS
1	57.566681	Connect response, OK, ARBlockRes, IOCRBlockRes, IOCRBlockRes, Alar
10	6 7.597427	RTC1, ID:0x9000, Len: 515, Cycle:28640 (Valid,Primary,Ok,Run)
-	7 7.665373	RTC1(legacy), ID:0xd000, Len: 515, Cycle:24544 (Valid,Primary,Ok,R
	87.676836	Control request, IODControlReq Prm End.req, Command: ParameterEnd
-	9 7.722487	RTC1, ID:0x9000, Len: 515, Cycle:32736 (Valid,Primary,Ok,Run)
	07.752361	Control response, OK, IODControlRes Prm End.rsp, Command: Done
	17.783395	 Control request, IOXBlockReq Application Ready.req, Command: Appli
-	2 7.793132	RTC1(legacy), ID:0xd000, Len: 515, Cycle:28640 (Valid,Primary,Ok,R
	37.820737	Control response, OK, IOXBlockRes Application Ready.rsp, Command:
-	4 7.846338	RTC1, ID:0x9000, Len: 515, Cycle:36832 (Valid,Primary,Ok,Run)
	5 7.920719	RTC1(legacy), ID:0xd000, Len: 515, Cycle:32736 (Valid, Primary, Ok, R
	6 7.970069	RTC1, ID:0x9000, Len: 515, Cycle:40928 (Valid,Primary,Ok,Run)
	7 7.992075	Read request, IODReadReqHeader, Api:0x0, Slot:0x0/0x0, Index:PDRea
	8 8.046153	Read response, OK, IODReadResHeader, Api:0x0, Slot:0x0/0x0, Index:
29	9 8.048382	RTC1(legacy), ID:0xd000, Len: 515, Cycle:36832 (Valid,Primary,Ok,F

Agenda

- Scope and methods
- Approach
- Use case
- Summary

Scope and methods

Scope and terminology

- Network communication of distributed (computer) systems:
 - OSI reference model
 - Protocol Data Units of higher levels: "messages"
- "Checking" those messages:
 - **Verification**: If a <u>specification</u> is correct according to the <u>design</u>. Prior to the implementation.
 - Validation: Check if <u>customer expectations</u> fulfilled
 - **Conformance check**: Check if an <u>implementation</u> matches the underlying specification

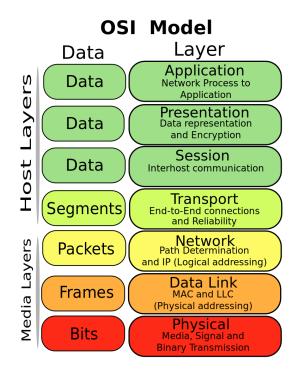
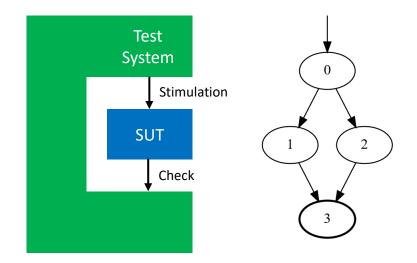


Image © CC BY-SA


User Conference on Advanced Automated Testing

Testing methods for software (e.g. source code)

- Architecture: Test system around System Under Test (SUT)
 - Stimulation via input parameters
 - Check of states or return values
 - E.g. Unit Tests
- Coverage criteria
 - E.g. check program execution paths

Testing network protocols

- Fuzzing: Generate random input/network data
- Conformance check
 - Replace other protocol layers with test system (upper tester, lower tester)
 - Run <u>subsequent</u> test cases...
 - → Difficult for already running systems without test interfaces
 - → Demand for diagnosis after commissioning

Protocol specifications given in different formats

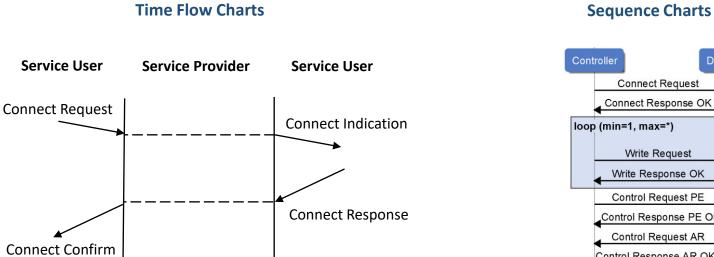
Example: Generation frequency of V2X status messages (CAMs) as plain text:

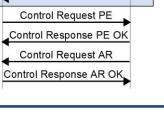
17 Final draft ETSI EN 302 637-2 V1.3.1 (2014-09)

6.1.3 CAM generation frequency management for vehicle ITS-Ss

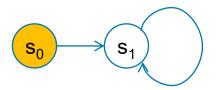
The CAM generation frequency is managed by the CA basic service; it defines the time interval between two consecutive CAM generations. Considering the requirements as specified in ETSI TS 101 539-1 [i.8], ETSI TS 101 539-2 [i.9] or ETSI TS 101 539-3 [i.10] the upper and lower limits of the transmission interval are set as follows:

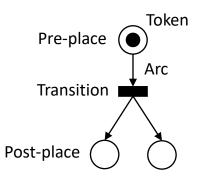
- The CAM generation interval shall not be inferior to *T_GenCamMin* = 100 ms. This corresponds to the CAM generation rate of 10 Hz.
- The CAM generation interval shall not be superior to T_GenCamMax = 1 000 ms. This corresponds to the CAM generation rate of 1 Hz.





Formal graphical descriptions for network protocols (1)

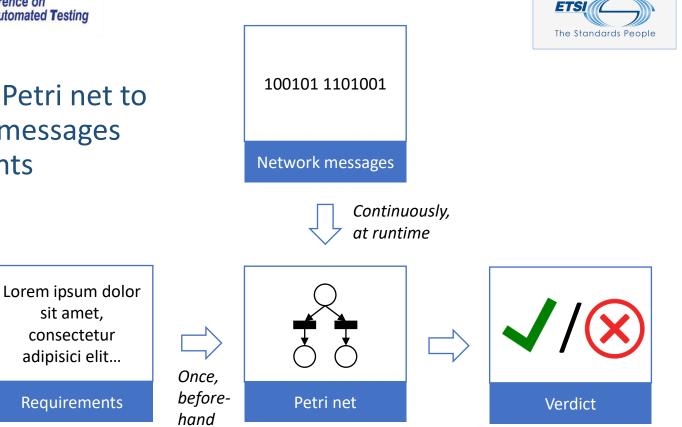

Device



Formal graphical descriptions for network protocols (2)

Finite State Machines

Aim: Check requirements and errors at the same time (like parallel test cases, but not all have to be executed) \rightarrow diagnosis

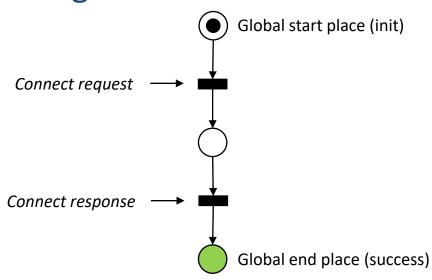


Approach

Approach: Using a Petri net to compare network messages against requirements

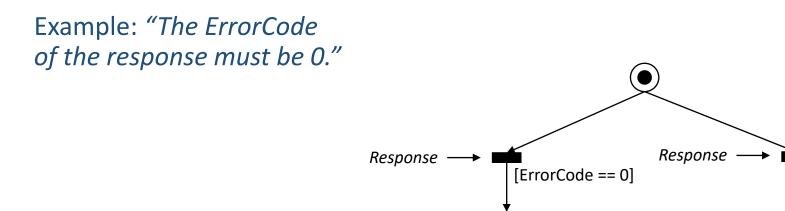
User Conference on Advanced Automated Testing

Images © CC BY-SA

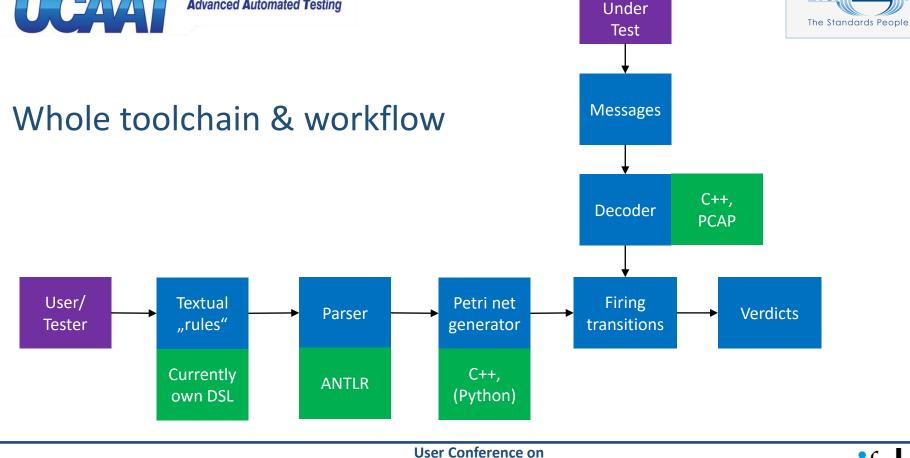


Case 1: Check a sequence of messages

Example: "A connect request is followed by a connect response."



Case 2: Check parameter values within messages


(success)

[ErrorCode != 0]

(error)

System

ETSI

Creation of structures via subnets

- Structures for control flow, e.g. from UML Sequence Diagrams
- Considered most important:
 - Alternatives ("alt")
 - Parallels ("par")
 - Loops ("loop")
 - Errors ("not")
- Start and end places as interfaces between structures

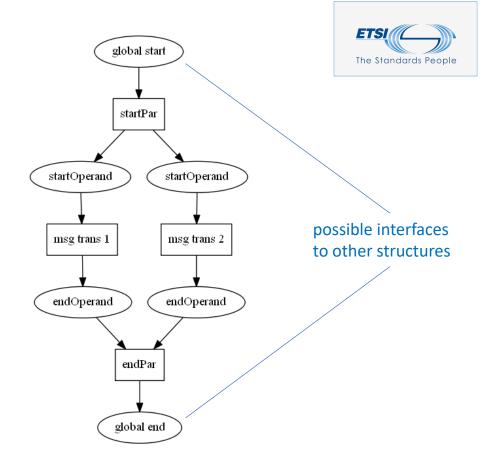
Description of net creation with Python

Text

Mathematical

Python

"A net N consists of places P, transitions T and flow relations F." N = (P; T; F)


class Petrinet :
 def __init__ (self):
 self.places = []
 self.transitions = []
 self.arcs = []

6 th User Conference on Advanced Automated Testing

def createPar(self, interfaces, operandCount):
 startTrans = self.petrinet.addTransition()
 self.petrinet.addArc(interfaces.getStartPlace(), startTrans)
 endTrans = self.petrinet.addTransition()
 self.petrinet.addArc(endTrans, interfaces.getEndPlace())
 operands = []

for i in range(0, operandCount):
 operandStartPlace = self.petrinet.addPlace()
 self.petrinet.addArc(startTrans, operandStartPlace)
 operandEndPlace = self.petrinet.addPlace()
 self.petrinet.addArc(operandEndPlace, endTrans)
 operandInterfaces = NetInterfaces(operandStartPlace, operandEndPlace)
 operands.append(operandInterfaces)

return operands

Use Case

Use Case: Vehicle-to-X communication (V2X)

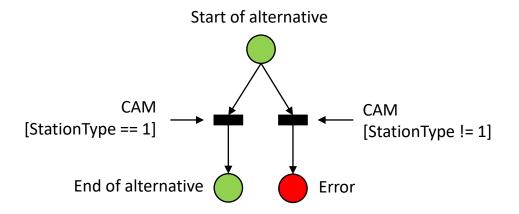
- Vehicles send out status messages periodically (Cooperative Awareness Messages, CAM)
- Monitoring modules shall capture and check messages according to user defined rules

First prototype

New version

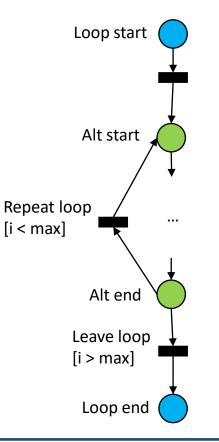
User-selected requirements for CAM payload

- User defined: StationType == 11 (Tram)
- From CAM protocol specification: $1 \text{ Hz} \le f \le 10 \text{ Hz}$



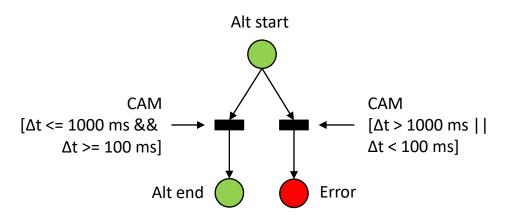
Check the vehicle role (1)

"Every CAM shall have a <u>station type of 1.</u>"



Check the vehicle role (2)

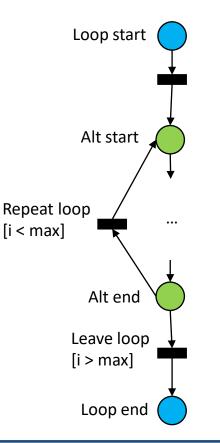
"<u>Every</u> CAM shall have a station type of 1."



Check the message interval (1)

"The transmit frequency shall always be <u>between</u> <u>1 Hz and 10 Hz</u>."

 $\Delta t = t_{CAM(n)} - t_{CAM(n-1)}$



Check the message interval (2)

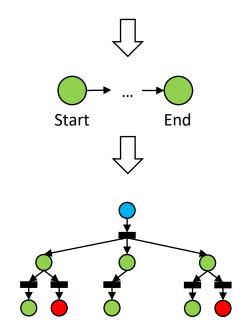
"The transmit frequency shall <u>always</u> be between 1 Hz and 10 Hz."

Check parameter and frequency Global start Parameter loop start Frequency loop start Loop end Loop end Global end (all processes finished)

ifa

User Conference on Advanced Automated Testing

Summary



Summary

- Check several requirements and detect errors <u>at the same time</u> → Diagnosis
- User-selected requirements as "rules"
- Petri subnets with interface places
- Connect subnets
- React to decoded messages (move tokens), create verdicts

Requirement / rule

Thank you for your kind attention Tim Ruß tim.russ@ifak.eu

(Backup)

User Conference on Advanced Automated Testing

import <denm cancelation.components> as stations

```
Rule {
```

name: "DENM Cancelation";

description: "Abkündigung einer DENM prüfen"

Declaration {

Signal {

```
name: "V2X_DENM";
                               use DENM.causeCode as cause;
sequence {
               Loop [3] {
                               Message CyclistWarning(from == rsu and to == car1);
                               Message CyclistWarning(from == rsu and to == Any);
               Message CyclistWarning(from == rsu and to == Any and canceled == true);
```